

OpenBSD vmm/vmd Update

Mike Larkin

bhyvecon 2019
20 Mar 2019 – Tokyo, Japan

Agenda

● Where we were a year ago
● Current status
● Future plans
● Q&A

One Year Ago ...

● Reasonably complete support for OpenBSD
and Linux guests

● amd64 and i386 host support
● SVM/VMX support
● Scaffolding and tools to support the above

– vmd(8)/vmctl(8)

This Past Year ...

● Adding new/core features
– Disk snapshotting
– Template VMs

● Security Improvements
– Removing lazy FPU support
– L1TF mitigation

● Platform improvements

– Bug fixing / paying down technical debt

This Past Year (cont’d) ...

● Community involvement
– Commercial deployments of vmm hosting

providers
– Usage of vmm(4) without vmd(8) for other use

cases

2018 vmm(4) Improvements

● Platform improvements
● Correctness improvements
● Performance/stability improvements
● Security improvements

● Some of these improvements impart new
functionality, some are bug fixes

2018 vmm(4) Platform Improvements

● Platform improvements
– Instruction emulation improved
– Support added for qemu fw_cfg interface
– Support guest OS %drX registers
– Platform support for PXE boot
– Implement missing PIC functionality

2018 vmm(4) Platform Improvements

● Instruction emulation fixes/improvement
– RDTSCP – Incorrect implementation broke

SmartOS boot
– MONITOR/MONITORX – Broke booting Linux

on Ryzen hosts
● QEMU fw_cfg interface support

– Allows passing boot parameters from SeaBIOS
into the VM

2018 vmm(4) Platform Improvements

● Support for guest %drX registers
– Allows hardware breakpoint usage inside guest

VM
– (OpenBSD doesn’t use these itself, was a

subject of a security vulnerability affecting
other OSes last year)

2018 vmm(4) Platform Improvements

● Platform support for PXE boot
– Implemented after last EuroBSDcon
– Requires iPXE extension ROM image
– Can be handled for OpenBSD guests differently

(discussed later)
● Implemented missing PIC functionality

– Basically bug fixes

2018 vmm(4) Correctness Improvements

● Correctness improvements
– Many fixes in CPUID emulation
– Add support for older CPUs without XSAVE
– Handle certain SMM-related MSRs properly

2018 vmm(4) Correctness Improvements

● CPUID improvements
– Handle misreported large leaf function #s
– Proper topology reporting
– Handle bizarre “rex extended CPUID”

instruction used in TempleOS
– Properly report physical address limits for the

host CPU
● Allows VMs with much larger memory

2018 vmm(4) Correctness Improvements

● Support CPUs without XSAVE
– Older CPUs don’t have this

● Handle reserved SMM-related MSRs
– SDM reference guide says these should #GP

on use (previously ignored, or returned 0)

2018 vmm(4) Performance Improvements

● We improved the SVM situation significantly
last year …

– Interrupt window handling was totally broken
before (fixed)

– RFLAGS.IF handling was totally broken before
(fixed)

– Each exit would lock/unlock the kernel lock up
to 4 times during exit processing before (now
zero)

2018 vmm(4) Performance Improvements

● #UD on VMX instructions
– “Inspired” by a KVM bug
– Previously, guest usermode program could

crash the VM since these instructions exit
before checking CPL

● We would terminate the VM before …

● #GP on invalid %cr0 / %cr4 bits
– Previously terminated the guest

2018 vmm(4) Performance Improvements

● Many of these improvements replaced
“terminate the guest” with functionality
appropriate for the case

– The “terminate the guest” on anything
unexpected was a remnant from early
development

– We can start to relax these conditions now

2018 vmm(4) Security Improvements

● Removed lazy FPU handling as part of the
larger OS-wide effort

● And of course there was L1TF last August...

2018 vmm(4) Security Improvements

● L1TF primer
– Allows read of data in L1 cache
– EPT addresses are treated as physical

addresses (!)
– Basically means a guest can read data out of

L1 that likely was placed there while running
in VMX root mode

2018 vmm(4) Security Improvements

● L1TF entry semantics (now)
– Flush L1 cache
– Enter guest
– …

● How do you flush L1?
– And is it only L1D or is there L1I → L1D

leakage too?

2018 vmm(4) Security Improvements

● New microcode has “flush L1” command MSR

● What if you don’t have the new microcode?
– Read a bunch of junk, hopefully fill all of L1D

what you read
– What about the cachelines you touch after that,

but before the entry (guest CPU registers)?
– And what about L1I, anyway?

2018 vmm(4) Security Improvements

● Our L1TF ‘junk’ data consists of 64KB of ‘0xcc’,
just in case there is L1D→L1I leakage

– Of course nobody who knows has said anything

2018 vmm(4) Security Improvements

● Maxime from NetBSD also reported a bug in
our handling of xsetbv arguments

● Thanks Maxime!

2018 vmd(8)/vmctl(8) Improvements

● Most of the more impactful improvements came
in vmd(8) and vmctl(8)

– Qcow2 disk support
– Disk snapshots
– Template VMs
– More user friendly vmctl(8) options

2018 vmctl(8)/vmd(8) Improvements

● Qcow2 disk support
– Supported in “standalone” or “base + snapshot”

mode
– Integrated into vmctl(8) and vmd(8)

● Old “raw” format still supported
– Both modes “sparse” but qcow2 is “lazy

allocated” (image grows over time)

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– vmctl(8) can create qcow2 disks:

-kadath- ~> vmctl create foo.raw -s 10g
vmctl: raw imagefile created
-kadath- ~> vmctl create foo.qcow2 -s 10g
vmctl: qcow2 imagefile created
-kadath- ~> ls -la foo.*
-rw------- 1 mlarkin wheel 262144 Mar 18 21:30 foo.qcow2
-rw------- 1 mlarkin wheel 10737418240 Mar 18 21:30 foo.raw

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– vmctl(8) can convert disks:

-kadath- ~> vmctl create foo2.raw -i foo.qcow2
vmctl: raw imagefile created
-kadath- ~> ls -la foo*
-rw------- 1 mlarkin wheel 262144 Mar 18 21:30 foo.qcow2
-rw------- 1 mlarkin wheel 10737418240 Mar 18 21:30 foo.raw
-rw------- 1 mlarkin wheel 10737418240 Mar 18 21:33 foo2.raw

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Sparseness is preserved:

-kadath- ~> du -h foo*
192K foo.qcow2
192K foo.raw
192K foo2.raw

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Base image + snapshot:

-kadath- ~> vmctl create derived.qcow2 -s 10G -b foo.qcow2
vmctl: qcow2 imagefile created
-kadath- ~> ls -la *qcow2
-rw------- 1 mlarkin wheel 262144 Mar 18 21:37 derived.qcow2
-rw------- 1 mlarkin wheel 262144 Mar 18 21:30 foo.qcow2

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Base image + snapshot accumulates all disk

changes in snapshot disk
– Rollback?

● rm derived.qcow2
● Restore previous derived.qcow2, restart VM

– It would be nice to have rollback/rollforward be
a new vmctl option (any takers?)

2018 vmd(8)/vmctl(8) Improvements

● vmctl(8) new command options for easier VM
management

– vmctl start -B xxx
● Set boot device (OpenBSD guests)
● Used for autoinstalling guest VMs via network

(vmctl start -B net …)

– vmctl stop -a
● Stop all VMs (used for shutdown scripts)

2018 vmd(8)/vmctl(8) Improvements

● vmctl(8) new command options for easier VM
management

– vmctl stop -f
● Force kill (terminate) a VM
● Don’t wait for vmmci(4)

2018 vmd(8)/vmctl(8) Improvements

● Template VMs

– vmctl start -t
– Allows for quick and easy “cloning” of VM settings

-t name Use an existing VM with the specified name as a
 template to create a new VM instance. The instance
 will inherit settings from the parent VM, except for
 exclusive options such as disk, interface lladdr, or
 interface names.

2018 vmm(4)/vmd(8) Misc Improvements

● We finally retired i386 hosts
– It served its purpose during early development
– Found a lot of bugs
– Wasn’t really worth maintaining anymore

● Of course i386 guests still work

2019 Goals

● We did pretty well reducing the bug count in 2018

– But there are still many

● Solicit community involvement

– Glad to have lots of new faces at the vmm table

● SMP is likely my personal #1 goal

– We’ve done just about everything else interesting

New Ideas For vmm(4)

● Underjack update
● Nested virtualization update

New Ideas For vmm(4)

● Last year I talked about the underjack approach
– Putting vmm(4) underneath the host
– Run host as a VM itself
– Allows XO (execute only) memory in the host

● XO memory is one defence against ROP
attacks

– Go see Todd Mortimer’s talk about RETGUARD
this week for another defence!

New Ideas For vmm(4)

● Underjack (cont’d)

– Kernel is working (was completed after last year’s
BhyveCon)

– How do you handle running VMs in vmm(4) when
the host machine itself is a VM?

New Ideas For vmm(4)

● Host/root partition approach

– Host treated as VM until launching a new (child) VM in
vmm(4) via vmctl(8)

– Temporarily exit host VM

– Enter guest context as usual

– Re-enter host VM context after exit

– Repeat ad nauseum

● This approach treats the host and guest VMs as peers of each
other

– Difficult to support nested XO memory

New Ideas For vmm(4)

● Nested VMX approach
– Never leave VMX mode
– Host VM launches VMs of its own

● Host VM becomes nested hypervisor

– Can more easily accomplish nested XO
● The first approach is easier to code
● The second approach allows for arbitrary levels

of nesting

New Ideas For vmm(4)

● Nested VMX approach status
– Does “emulated” VMCS (no VMCS shadowing)

● Slow

● May decide at some point to switch approaches
– Security improvement (XO memory) vs

functionality (nested VMs) decision

New Ideas For vmm(4)

● Nested VMX update
– Boots OpenBSD/vmm(4) and Linux/KVM guests
– Needs to be redone to use shadow VMCS

● Tons of VMCS traffic
● Lots of issues for 32 bit hypervisor hosts if not

done (HI/LO VMCS fields handled separately)
● Maybe we don’t care

New Ideas For vmm(4)

● pvclock(4)
– Paravirtualized clock
– Modeled after KVM’s PV clock interface
– Should hopefully help time skews and high CPU

usage for applications doing lots of
gettimeofday() or equivalent

Community Involvement

● I’d like to take a few minutes to point out a few
things going on in the community …

● OpenBSD.amsterdam
– Hosted vmm(4) VMs
– Part of the hosting fee is donated to the

OpenBSD foundation

Community Involvement

● OpenBSD.amsterdam (cont’d)
– 238 VMs deployed since last year, across 7

servers

● BhyveCon referral/discount code
– ‘BhyveCon’ (5 EUR discount)

Community Involvement

● Solo5
– Sandboxed environment for running unikernels
– Support added for using vmm(4) as a backend

hypervisor

● Would love to see more integrations like this

Questions?

● Any questions?

Thank You

Mike Larkin
mlarkin@openbsd.org

@mlarkin2012

mailto:mlarkin@openbsd.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

