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Agenda

● Where we were a year ago
● Current status
● Future plans
● Q&A



  

One Year Ago ...

● Reasonably complete support for OpenBSD 
and Linux guests

● amd64 and i386 host support
● SVM/VMX support
● Scaffolding and tools to support the above

– vmd(8)/vmctl(8)



  

This Past Year ...

● Adding new/core features
– Disk snapshotting
– Template VMs

● Security Improvements
– Removing lazy FPU support
– L1TF mitigation

● Platform improvements

– Bug fixing / paying down technical debt



  

This Past Year (cont’d) ...

● Community involvement
– Commercial deployments of vmm hosting 

providers
– Usage of vmm(4) without vmd(8) for other use 

cases



  

2018 vmm(4) Improvements

● Platform improvements
● Correctness improvements
● Performance/stability improvements
● Security improvements

● Some of these improvements impart new 
functionality, some are bug fixes



  

2018 vmm(4) Platform Improvements

● Platform improvements
– Instruction emulation improved
– Support added for qemu fw_cfg interface
– Support guest OS %drX registers
– Platform support for PXE boot
– Implement missing PIC functionality



  

2018 vmm(4) Platform Improvements

● Instruction emulation fixes/improvement
– RDTSCP – Incorrect implementation broke 

SmartOS boot
– MONITOR/MONITORX – Broke booting Linux 

on Ryzen hosts
● QEMU fw_cfg interface support

– Allows passing boot parameters from SeaBIOS 
into the VM



  

2018 vmm(4) Platform Improvements

● Support for guest %drX registers
– Allows hardware breakpoint usage inside guest 

VM
– (OpenBSD doesn’t use these itself, was a 

subject of a security vulnerability affecting 
other OSes last year)



  

2018 vmm(4) Platform Improvements

● Platform support for PXE boot
– Implemented after last EuroBSDcon
– Requires iPXE extension ROM image
– Can be handled for OpenBSD guests differently 

(discussed later)
● Implemented missing PIC functionality

– Basically bug fixes



  

2018 vmm(4) Correctness Improvements

● Correctness improvements
– Many fixes in CPUID emulation
– Add support for older CPUs without XSAVE
– Handle certain SMM-related MSRs properly



  

2018 vmm(4) Correctness Improvements

● CPUID improvements
– Handle misreported large leaf function #s
– Proper topology reporting
– Handle bizarre “rex extended CPUID” 

instruction used in TempleOS
– Properly report physical address limits for the 

host CPU
● Allows VMs with much larger memory



  

2018 vmm(4) Correctness Improvements

● Support CPUs without XSAVE
– Older CPUs don’t have this

● Handle reserved SMM-related MSRs
– SDM reference guide says these should #GP 

on use (previously ignored, or returned 0)



  

2018 vmm(4) Performance Improvements

● We improved the SVM situation significantly 
last year …

– Interrupt window handling was totally broken 
before (fixed)

– RFLAGS.IF handling was totally broken before 
(fixed)

– Each exit would lock/unlock the kernel lock up 
to 4 times during exit processing before (now 
zero)



  

2018 vmm(4) Performance Improvements

● #UD on VMX instructions
– “Inspired” by a KVM bug
– Previously, guest usermode program could 

crash the VM since these instructions exit 
before checking CPL

● We would terminate the VM before …

● #GP on invalid %cr0 / %cr4 bits
– Previously terminated the guest



  

2018 vmm(4) Performance Improvements

● Many of these improvements replaced 
“terminate the guest” with functionality 
appropriate for the case

– The “terminate the guest” on anything 
unexpected was a remnant from early 
development

– We can start to relax these conditions now



  

2018 vmm(4) Security Improvements

● Removed lazy FPU handling as part of the 
larger OS-wide effort

● And of course there was L1TF last August...



  

2018 vmm(4) Security Improvements

● L1TF primer
– Allows read of data in L1 cache
– EPT addresses are treated as physical 

addresses (!)
– Basically means a guest can read data out of 

L1 that likely was placed there while running 
in VMX root mode



  

2018 vmm(4) Security Improvements

● L1TF entry semantics (now)
– Flush L1 cache
– Enter guest
– …

● How do you flush L1?
– And is it only L1D or is there L1I → L1D 

leakage too?



  

2018 vmm(4) Security Improvements

● New microcode has “flush L1” command MSR

● What if you don’t have the new microcode?
– Read a bunch of junk, hopefully fill all of L1D 

what you read
– What about the cachelines you touch after that, 

but before the entry (guest CPU registers)?
– And what about L1I, anyway?



  

2018 vmm(4) Security Improvements

● Our L1TF ‘junk’ data consists of 64KB of ‘0xcc’, 
just in case there is L1D→L1I leakage

– Of course nobody who knows has said anything



  

2018 vmm(4) Security Improvements

● Maxime from NetBSD also reported a bug in 
our handling of xsetbv arguments

● Thanks Maxime!



  

2018 vmd(8)/vmctl(8) Improvements

● Most of the more impactful improvements came 
in vmd(8) and vmctl(8)

– Qcow2 disk support
– Disk snapshots
– Template VMs
– More user friendly vmctl(8) options



  

2018 vmctl(8)/vmd(8) Improvements

● Qcow2 disk support
– Supported in “standalone” or “base + snapshot” 

mode
– Integrated into vmctl(8) and vmd(8)

● Old “raw” format still supported
– Both modes “sparse” but qcow2 is “lazy 

allocated” (image grows over time)

 



  

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– vmctl(8) can create qcow2 disks:

-kadath- ~> vmctl create foo.raw -s 10g
vmctl: raw imagefile created
-kadath- ~> vmctl create foo.qcow2 -s 10g
vmctl: qcow2 imagefile created
-kadath- ~> ls -la foo.*
-rw-------  1 mlarkin  wheel       262144 Mar 18 21:30 foo.qcow2
-rw-------  1 mlarkin  wheel  10737418240 Mar 18 21:30 foo.raw



  

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– vmctl(8) can convert disks:

-kadath- ~> vmctl create foo2.raw -i foo.qcow2
vmctl: raw imagefile created
-kadath- ~> ls -la foo*
-rw-------  1 mlarkin  wheel       262144 Mar 18 21:30 foo.qcow2
-rw-------  1 mlarkin  wheel  10737418240 Mar 18 21:30 foo.raw
-rw-------  1 mlarkin  wheel  10737418240 Mar 18 21:33 foo2.raw



  

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Sparseness is preserved:

-kadath- ~> du -h foo*
192K    foo.qcow2
192K    foo.raw
192K    foo2.raw



  

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Base image + snapshot:

-kadath- ~> vmctl create derived.qcow2 -s 10G -b foo.qcow2 
vmctl: qcow2 imagefile created
-kadath- ~> ls -la *qcow2
-rw-------  1 mlarkin  wheel  262144 Mar 18 21:37 derived.qcow2
-rw-------  1 mlarkin  wheel  262144 Mar 18 21:30 foo.qcow2



  

2018 vmd(8)/vmctl(8) Improvements

● Qcow2 (cont’d)
– Base image + snapshot accumulates all disk 

changes in snapshot disk
– Rollback?

● rm derived.qcow2
● Restore previous derived.qcow2, restart VM

– It would be nice to have rollback/rollforward be 
a new vmctl option (any takers?)



  

2018 vmd(8)/vmctl(8) Improvements

● vmctl(8) new command options for easier VM 
management

– vmctl start -B xxx
● Set boot device (OpenBSD guests)
● Used for autoinstalling guest VMs via network 

(vmctl start -B net …)

– vmctl stop -a
● Stop all VMs (used for shutdown scripts)  



  

2018 vmd(8)/vmctl(8) Improvements

● vmctl(8) new command options for easier VM 
management

– vmctl stop -f
● Force kill (terminate) a VM
● Don’t wait for vmmci(4)



  

2018 vmd(8)/vmctl(8) Improvements

● Template VMs

– vmctl start -t
– Allows for quick and easy “cloning” of VM settings 

-t name    Use an existing VM with the specified name as a
           template to create a new VM instance.  The instance
           will inherit settings from the parent VM, except for
           exclusive options such as disk, interface lladdr, or
           interface names.



  

2018 vmm(4)/vmd(8) Misc Improvements

● We finally retired i386 hosts
– It served its purpose during early development
– Found a lot of bugs
– Wasn’t really worth maintaining anymore

● Of course i386 guests still work



  

2019 Goals

● We did pretty well reducing the bug count in 2018

– But there are still many

● Solicit community involvement

– Glad to have lots of new faces at the vmm table

● SMP is likely my personal #1 goal

– We’ve done just about everything else interesting



  

New Ideas For vmm(4)

● Underjack update
● Nested virtualization update



  

New Ideas For vmm(4)

● Last year I talked about the underjack approach
– Putting vmm(4) underneath the host
– Run host as a VM itself
– Allows XO (execute only) memory in the host

● XO memory is one defence against ROP 
attacks

– Go see Todd Mortimer’s talk about RETGUARD 
this week for another defence!



  

New Ideas For vmm(4)

● Underjack (cont’d)

– Kernel is working (was completed after last year’s 
BhyveCon)

– How do you handle running VMs in vmm(4) when 
the host machine itself is a VM?



  

New Ideas For vmm(4)

● Host/root partition approach

– Host treated as VM until launching a new (child) VM in 
vmm(4) via vmctl(8)

– Temporarily exit host VM

– Enter guest context as usual

– Re-enter host VM context after exit

– Repeat ad nauseum

● This approach treats the host and guest VMs as peers of each 
other

– Difficult to support nested XO memory



  

New Ideas For vmm(4)

● Nested VMX approach
– Never leave VMX mode
– Host VM launches VMs of its own

● Host VM becomes nested hypervisor

– Can more easily accomplish nested XO
● The first approach is easier to code
● The second approach allows for arbitrary levels 

of nesting



  

New Ideas For vmm(4)

● Nested VMX approach status
– Does “emulated” VMCS (no VMCS shadowing)

● Slow

● May decide at some point to switch approaches
– Security improvement (XO memory) vs 

functionality (nested VMs) decision



  

New Ideas For vmm(4)

● Nested VMX update
– Boots OpenBSD/vmm(4) and Linux/KVM guests
– Needs to be redone to use shadow VMCS

● Tons of VMCS traffic
● Lots of issues for 32 bit hypervisor hosts if not 

done (HI/LO VMCS fields handled separately)
● Maybe we don’t care



  

New Ideas For vmm(4)

● pvclock(4)
– Paravirtualized clock
– Modeled after KVM’s PV clock interface
– Should hopefully help time skews and high CPU 

usage for applications doing lots of 
gettimeofday() or equivalent



  

Community Involvement

● I’d like to take a few minutes to point out a few 
things going on in the community …

● OpenBSD.amsterdam
– Hosted vmm(4) VMs
– Part of the hosting fee is donated to the 

OpenBSD foundation



  

Community Involvement

● OpenBSD.amsterdam (cont’d)
– 238 VMs deployed since last year, across 7 

servers

● BhyveCon referral/discount code
– ‘BhyveCon’ (5 EUR discount)



  

Community Involvement

● Solo5
– Sandboxed environment for running unikernels
– Support added for using vmm(4) as a backend 

hypervisor

● Would love to see more integrations like this



  

Questions?

● Any questions?



  

Thank You

Mike Larkin
mlarkin@openbsd.org

@mlarkin2012

mailto:mlarkin@openbsd.org
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